Ito – SMART Trading Strategies https://smarttradingstrategies.com Statistical and Mathematical Approach to Retail Trading Sun, 10 Oct 2021 11:40:09 +0000 en-US hourly 1 https://smarttradingstrategies.com/wp-content/uploads/2021/08/logo-150x150.png Ito – SMART Trading Strategies https://smarttradingstrategies.com 32 32 Different Forms of Itô’s Lemma https://smarttradingstrategies.com/different-forms-of-itos-lemma/ https://smarttradingstrategies.com/different-forms-of-itos-lemma/#respond Sun, 10 Oct 2021 11:38:26 +0000 https://smarttradingstrategies.com/?p=574 Case 1: Function is in terms of X (Brownian Motion)

Case 1a: F = F(X)

dF = \frac{1}{2}\frac{d^2F}{dX^2}dt + \frac{dF}{dX}dX

Case 1b: F = F(t, X)

dF = \left(\frac{\partial F}{\partial t} + \frac{1}{2}\frac{\partial^2 F}{\partial X^2} \right)dt + \frac{\partial F}{\partial X}dX

Case 2: Function is in terms of Z

dZ = a(Z, t) dt + b(Z, t) dX

Case 2a: F = F(Z)

dF = \left(a\frac{dF}{dZ} + \frac{1}{2}b^2\frac{d^2F}{dZ^2} \right)dt + \left(b\frac{dF}{dZ} \right)dX

Case 2b: F = F(t, Z)

dF = \left(\frac{\partial F}{\partial t} + a\frac{\partial F}{\partial Z} + \frac{1}{2}b^2\frac{\partial^2 F}{\partial Z^2} \right)dt + \left(b\frac{\partial F}{\partial Z} \right)dX
]]>
https://smarttradingstrategies.com/different-forms-of-itos-lemma/feed/ 0