A binomial model is made up of nodes that split into two separate branches.
![](https://smarttradingstrategies.com/wp-content/uploads/2021/08/binomial-2-236x300.png)
Suppose the branches in the model above represent log returns rt and the nodes represent asset values St.
We can represent the model using the equations below:
\begin{aligned} r_t &\equiv log\left(\frac{S_t}{S_{t-1}}\right) \\ &= a + bz_t, \text{ where }z_t = \pm 1\text{ and}\\ \\ a &= \frac{logR_u + logR_d}{2}\\ b &= \frac{logR_u - logR_d}{2}. \\ \\ \text{Therefore, }\frac{S_t}{S_{t-1}} &= R_u \text{ when z = 1 (i.e. an up move) and }\\ &= R_d \text{ when z = -1 (i.e. a down move)}\\ \\ log\left(\frac{S_T}{S_0}\right) &= log\left(\frac{S_T}{S_{T-1}}\right) + log\left(\frac{S_{T-1}}{S_{T-2}}\right) + ... + log\left(\frac{S_1}{S_0}\right)\\ &= r_T + ... + r_2 + r_1\\ &= aT + b\sum z_t\\ \end{aligned}
If we let X = log(ST/S0)
, we can rewrite the equation above as
\begin{aligned} X &= r_1 + r_2 + ...+ r_T\\ \end{aligned}
This is essentially a generalized random walk model, where
\begin{aligned} r_t &= a + bz_t,\;z_t = \pm1\\ \end{aligned}
In other words, we can create a random walk model using a binomial model.
Let’s look at a concrete example:
![](https://smarttradingstrategies.com/wp-content/uploads/2021/08/binomialExample.png)
Consider the case where S2 = 64
\begin{aligned} X &= log\left(\frac{64}{16}\right)\\ &= r_1 + r_2\\ &= log\left(\frac{32}{16}\right) + log\left(\frac{64}{32}\right)\\ &= a + b(1) + a + b(1)\\ &= 2a + 2b\\ &= log(2) + log(2)\\ &= log(4) \end{aligned}
To connect the model to real-world asset prices, we can calculate the mean and variance of the model.
\begin{aligned} \mu &= E[r_t]\\ &= E[a + bz_t]\\ &= a + pb\text{ (where p = P(}z_t = 1))\\ \\ \sigma^2 &= Var(r_t)\\ &= E[(r_t - a - pb)^2]\\ &= E[(bz_t - pb)^2]\\ &= b^2E[(z_t - p)^2]\\ &= b^2\{E[z_t^2] - 2E[z_tp] + E[p^2]\}\\ &= b^2\{E[z_t^2] - 2E[z_tp] + E[p^2]\}\\ &= b^2(p - 2p^2 + p^2)\\ &= b^2p(1-p) \end{aligned}
Leave a Reply